
The interaction of ground water and surface water
From modeling to the field and back again

Take-home message: 
Iterate between 
modeling and field work

Physiography 
related to flowpath
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Ground-breaking research on exchange 
between groundwater and surface water

1976

Tom Winter is not just another old guy whose name you have to memorize for a 
hydrogeology exam.  Tom’s ground-breaking research in the 1970s and 1980s greatly 
changed the way we view the connection between groundwater and surface water.  We will 
look at some of his early modeling results of hypothetical settings and compare them with 
what we see in actual field settings.
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Common concept: water flows from wetland to wetland to wetland
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This is just common sense, right?  As the next few 
slides will demonstrate, maybe not, and certainly not 
in some settings.



Island Lake wells and 
piezometers showed a 
simple system – perhaps 
because of the simple 
geology?  It’s all dune sand.

Crescent Lake National 
Wildlife Refuge, 
Nebraska sand hills

Sometimes 
this actually 
happens

Winter, 1986, JHydrol.

Here finally may be a 
setting where we might 
have homogeneity.
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But not if K is decreased
Water in lowest wetland can be a mix of local and regional

flow but it can not contain any water from upgradient wetlands

There are four closed, local-flow systems.  Some water 
recharging on the far right side flows beneath the 
intermediate wetlands and discharges at the lowest 
wetland.  Discharge water is a mix of regional and 
locally recharged ground water.

With lower K, water basically can’t move through the flow field fast enough and with sufficient recharge it piles up above the 
wetlands.  We still have uniform geology, but now we have flow-separation lines that represent the boundary between local 
and inter-basin flow.  These boundaries distinguish water that remains within a single topographic basin and water that is 
recharged in one basin and discharges to another downgradient basin.   The downgradient basin could be considered as a 
regional drain for the flow domain.  Discharge at the drain to the left is a mix of older and younger waters. 5

Water table, not 
land surface



But if we have buried aquifers. . .
Middle two wetlands still are closed flow systems, but water from upper 

wetland now can flow to lowest wetland

If a buried aquifer is present, water can 
leak from the highest wetland and flow to 
the lowest wetland.  This can happen even 
if the aquifer is discontinuous.

A buried aquifer, or zone of sediment that transmits water more rapidly, basically creates a 
short circuit  in the flow system that draws water from the upper wetland.  Now the upper 
wetland has changed from a closed, local flow system to become a recharge wetland that 
supplies water to the aquifer and eventually to the drain at the left end of the flow field.
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A stagnation point (blue dot) forms at the point where head along a flow-separation line is lowest.  A 
stagnation point is a point in a flow field of zero velocity.  Ground water is not moving at a stagnation 

point.  (Water could be very old near a stagnation point and interesting chemistry could result.)

Water cannot leave the lake or wetland.  
Water cannot flow from the upgradient to 
the downgradient lake or wetland.

If a stagnation point is present, a closed, local flow system exists.  Water cannot leave the wetland; water cannot flow from
the wetland to a lower-head drain.  Tom Winter was very excited to discover the concept of stagnation points, but it turns out 
petroleum engineers had known about this years earlier.  But no one had thought about this from a groundwater-surface-
water perspective.  Luckily, Tom’s advisor was well versed in the petroleum-engineering literature.

Flow-separation line

230.9
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A stagnation point shown with Topodrive

You can also clearly see the flow separation lines by creating new flowlines that become increasingly closer to the 
stagnation point. 8



Transient flow reversals Winter, 1983, WRR

A flow-through or “seepage lake”
Hydraulic-head dam

Flow reversal

Tom simulated the response to a snowmelt recharge event

Stagnation point

Stagnation point

Stagnation point lifts off 
the bottom; flow to the 
drain is now possible

On day 211 the mound 
goes to 50.0, the flow 
reversal ends, and normal 
seepage resumes

Mound is still at 50.4.
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Tom’s previous models were all steady-state, but simulating 
changes over time was even more surprising.



But have you ever seen 
this in the real world?
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b ≈ 1/2 
lake depth

Off to Williams Lake
Where we already had a good idea of what was going on

Here we also show the elusive parameter b, which 
is the thickness of aquifer that interacts with a 
surface-water body.  Modeling showed us what b
should be.  We’ll talk more about this later.
But let’s focus for now on the left side of the lake 
where the steady-state model shows flow from the 
lake to groundwater.
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Upgradient lake

Drain

130 mm 
rainfall

100 mm rainfall14 days

14 days

Transient 
mounds did 
form in 
response to 
recharge, but 
not during 
snowmelt

Rosenberry, 1990, 
NALMS

Field studies confirmed the 
occurrence of flow reversals on the 
downgradient sides of lakes.  
However, in these sandy sediments, 
reversals lasted for weeks, not 
months.
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sand

Mirror Lake, New Hampshire
• Lake situated in glacial drift and crystalline bedrock

• Modeling plus wells indicates a simple flow-through lake

• On first glance, this looks like a 
classic seepage lake

Rosenberry & Winter, 1993, IAH Proc.

A

A´

A´A

Without data at the K1 piezometer nest, 
we would assume GW flows into the lake 
on the north and lake water flows to GW 
on the south side of the lake.
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0 2m

Detailed seepage measurements indicate upward seepage 
offshore but strong downward seepage near shore

K1 piezometer nest

Very interesting data.  Why do we have 
positive values farthest from shore?

These seepage-meter data indicate something very strange is going on.  Negative values indicate 
downward seepage and positive values indicate upward seepage.  The meters farthest from shore indicate 
upward seepage but everything else closer to the shoreline indicates downward seepage, including some 
very fast rates of downward seepage.  Interesting.  What do data from the piezometer nest show?
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sand

bedrock

till

K1 piezometer nest

High bedrock head suggests upward GW flow at downgradient side of lake

We had downward gradients at the piezometer nest as we would expect.  
However, data from the bedrock piezometer, shown here in red, were 
perplexing.  There were periods when head in the bedrock well was 
higher than piezometers screened in the till or even in the overlying sand. 
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Additional data indicate a very interesting exchange 
between the lake and ground water

Study location

We have a hinge line (a line separating upward flow across the lakebed from downward flow across the lakebed) that exists 10 to 40 m 
from the south shoreline.  GW discharge from high head north of the lake is passing beneath the lake, and beneath very low-K organic 
sediments beneath the lake, to discharge near the south end of the lake.  But a sand deposit extends beneath the south shore of the lake 
all the way to Hubbard Brook, which has much lower head.  This sand lens (another short circuit) allows rapid seepage of water from the 
lakebed close to the shoreline.  So we have a very complex setting and also a complicated flow system in this setting.  It took a 
combination of data and modeling to figure this one out.

K1 nest
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Lake

Till

Bedrock

Sand

Hinge line

Topodrive can show this setting too

Notice the flow line that enters the lake, flows laterally through the lake, and 
then leaves the lake to flow downward into the sand.  That key flowline is 
proof that a hinge line exists that separates upward flow of groundwater to the 
lake from downward flow from the lake to groundwater.



Given homogeneity, seepage decreases exponentially 
with distance from shore

McBride and Pfannkuch, 1975, USGS J. Res
Pfannkuch and Winter, 1984, JHydrol.
Winter and Pfannkuch, 1984, JHydrol.
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This is a basic tenet in hydrogeology and GW-SW exchange that 
was first made known to the hydrogeology community with the 
McBride and Pfannkuch paper.  Any numerical model will show this 
type of distribution with distance from shore of the simulated porous 
medium is homogeneous.  

Olaf Pfannkuch
after a GSA session 

held in his honor
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Exponential decrease in lakes and rivers?

Yes

No

Remember the influence of Geology?
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But the world is rarely homogeneous.  Geology often disrupts the 
normal distribution of seepage and there are numerous examples in 
the literature.



Position and areal 
extent of buried 

aquifer

Lake can lose water to 
the aquifer

You could have 100 
wells around this lake 
and you’d never know 
about the “hole” in the 

middle

Winter, 1978, WRR
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Water table

Once Tom was up to speed with the very complex model that his 
colleague down the hall, Dick Cooley, had developed, Tom could 
simulate all sorts of settings.  He had been working with some 
colleagues who were studying lakes in Florida, where a thin, low-K
layer separates surficial sands from a deeper massive limestone 
aquifer that underlies most of the state.  Tom wanted to know how 
breaks in that low-K layer might affect exchange between 
groundwater and an overlying lake.  Tom never did publish the 
results shown in the next five slides, but his colleagues in Florida 
certainly benefitted from the new insights they provided.



Position and areal 
extent of buried 

aquifer

Move the aquifer and 
now the lake can’t lose 

water

Winter, 1978, WRR
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What if we have a confined aquifer with a hole in the confining bed
Analogous to the Floridan-Hawthorn system in Florida

Lake loses water to the Floridan aquifer

K=1

K=0.001
K=1000 Floridan aquifer

Tom never 
published this

22

Hawthorne group



With a smaller “window,” the lake no longer seeps to the aquifer
A closed, local-flow system develops
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What if the rubble in the hole is really dirty (lower-K)?
Now the lake stops losing water and a closed flow system develops.

K=1

K=0.001
K=1000

K=0.01
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But how to test this? – you’d need a well in the middle of the lake
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Terrie Lee, Lake Lucerne, Florida

They floated a barge carrying a drill rig out to the center of this lake 
that is about 6 m deep.  They installed a piezometer and measured 
depth to water inside the casing and compared that with 
measurements of depth to water outside of the casing (tough to do 
on a windy day!).  This gave them difference in head between the 
well screen and the lake.  The white rectangle is a styrofoam float 
that rises and falls as the lake level changes.  It is a nice rockin’ and 
rollin’ platform that can make water-level measurements difficult in a 
stiff breeze.  This photo was taken back in the bad old days before 
we had personal flotation devices.
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Key well

Lake Lucerne, Polk County, FL

Lee, 2002, WRIR 02-4033

Sure enough, the head at that well 
was lower than lake stage.  This 
indicated that the modeled setting 
actually exists in the real world, not 
just in the modeled world.
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Strange field results 
+ modeling 

= new understanding

the Lake Belle Taine story

Rosenberry, 2000, WRR

This study provides an example of what can happen in 
unusual settings.  In this case, the field results came first 
and the modeling helped us understand how this type of 
setting could exist.
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• Ten lakes drain into Belle Taine

• Average streamflow into lake = 1 m3/s

• No outlet

• P = E

• Where does all the water go?  There is 
no outlet

• Lakes as close as 0.5 km away are 15 m 
lower in stage (a gradient of 0.03)

• Drillers report unusually warm ground 
water in wells drilled along the south 
shore of the lake

• Geothermal activity?

• GW-SW training class found 
strange things going on

This landscape is geologically young; it is still adjusting 
to the retreat of glaciers that occurred about 9000 years 
ago and the drainage network is still not fully developed.  
Because of that, Lake Belle Taine does not yet have a 
surface-water outlet.
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Native translation – “The lake 
into which the river dies”



Belle Taine
480 ha 

7th Crow Wing
6th Crow Wing

5th Crow Wing

435.5

421

Leech Lake
45,000 ha

How can this be?  The lake water budget must balance.  It 
turns out the outlet occurs not as streamflow but as 
groundwater flow.  All of the water that flows into the lake via 
Little Sand Creek is equaled by leakage of lake water to 
groundwater along the south shoreline, and GW flow to the 
Crow Wing chain of lakes (on the right (south) side in this 
photograph). Values of 421 and 435.5 are elevations of the lake 
surfaces in m above sea level.
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11th Crow Wing



1 m3/s

In order for input of 1 m3/s to equal output, seepage through the 
south shoreline that is 8.7 km long should be ~30 to ~90 cm/d.
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This is the deepest well that I have 
augered with a hand auger.
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Not only was the water table 1.5 m from the shoreline way below the lake 
surface, sediments beneath the lake were unsaturated.  This was crazy!



Constant head = -30.4 m

Constant head = -16 m

VS2dT Model grid
730 m 150 m

60 m

Iterating between field and model results  doesn’t have to start with modeling 
results. This time field data were collected that led to a modeling study. Here, a 
2-d finite-difference model that can simulate variably saturated flow was created 
to match field boundary conditions.  The constant head simulated on the right 
would be Lake Belle Taine and the constant head on the left would be one of the 
Crow Wing lakes. 34

Tom was fascinated by the data I was 
collecting, but he said that no journal 
would publish this unless a model 
could verify the results.  



Hi K outwash Low K lakebed

Very high K Lake

VS2D textures

The organic-rich sand of the lakebed was simulated in the light blue zone that 
increased in thickness with distance from shore. This is under the assumption 
that waves at the shoreline would wash fine-grained particles into the lower-
energy deeper portions of the lake.
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KO/KL = 70

KO/KL = 20 KO/KL = 15

6.7 m

2 m

Best match for wedge thickness

Best match for lakebed and 
outwash geology

Lowest KO/KL to create 
UZ beneath lake

67 m

15 m

7.5 m

The model was able to simulate an unsaturated-zone wedge 
beneath the lakebed.  The extent of the  wedge depended on 
the contrast between K of the outwash and K of the lakebed 
sediments.  A ratio of 70 created the best match for wedge 
thickness at the shoreline.  The model indicated that the 
wedge extended 67 m beyond the shoreline, but we were 
never able to make measurements beyond 20 m from shore.  
A ratio of 20 was closest to best estimates based on K
determined from sieving lakebed sediment samples.  Model 
runs with ratios smaller than 15 failed to generate unsaturated 
sediments beneath the lake.  Based on model results, either 
K of the outwash was larger than we determined based on 
grain size analyses or K of the lakebed was smaller than our 
best estimates from analysis of sediment cores collected from 
the lake.
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A very nice place to play
Under normal conditions, Lake Belle Taine is a very 
pleasant lake with beautiful scenery and many recreation 
opportunities.
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The rest of the story



Several wet years turns Belle Taine 
vacation paradise into a really bad 
situation.  This is why the public 
cares about investing in science!

But when 1 m3/s turns into 2 or 4 m3/s, the loss to groundwater just can’t 
increase as fast.  The result is a rising lake level.  And this is basically a long-
term flood.  The water level doesn’t drop until normal climatic conditions 
resume years later.
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High water is countered by loss 
to groundwater, but it’s not 
enough

Property damage was occurring all around the lake. 39



• Jetted in 30 cm dia. PVC pipe 
~30 cm through the lakebed

• Seepage baggie was instantly 
sucked inside the pipe

• Connected seepage cylinder to an 
inverted floating seepage tub with 
5.5-cm-diameter hose

• Measured seepage rates up to 
25,000 cm/d!

• Seepage rates were back to 
normal after 2 months (10 to 100 
cm/d)

. . So what to do about this?

Rosenberry et al., 2010, WRR

What if the low-K sediments were not present? 
Could more water leave the lake and lower the 
high lake stage? That is what this study set out to 
find out.  What would the downward seepage 
rates be without the thin clogging layer?  The 
insanely fast seepage rates that resulted are by 
far the fastest I’ve seen in the literature.
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These bubbles were released when I removed the cap that I had 
installed to close off seepage before making my initial 
measurements.  This demonstrated that sediments beneath the 
bed indeed were unsaturated.  But exceptionally fast seepage 
rates were only sustained for days to months, after which close-
to-normal seepage rates resumed.  The bed was basically being 
re-clogged during that time.
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P1

P3

•Post-disturbance seepage was 
2 to 3 orders of magnitude
faster than pre-disturbance 
seepage

•After 47 days P1 was still 
1500 cm/d

Rosenberry et al, 2010, WRR
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•Is natural bed self 
sealing?

•Crayfish burrows
•Macro equivalent to 
chironomids?

This raises the question, is the bed self-sealing?  
We’ve seen these holes or depressions in other lakes 
where seepage is downward and rapid.  But when we 
place seepage meters over these areas, most of the 
time the seepage rates are not unusually large.  Why 
not?  Also, we have observed small holes that appear 
to be connected to other holes, some of which are 
occupied by crayfish and other benthic animals.  What 
effect might they have on lakebed permeability?  More 
about that later when we talk about biological effects.
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Lewandowski et al., 2007, Freshwat. Biol

Chironomid larvae
Lake Arendsee, Germany

Could these chironomids be serving 
as an anti-colmation process?  
Results of this study would seem to 
support this thinking.
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1 to 2 cm long

13 x 16 cm



Stage change in closed basins as an indicator 
of climate change

ground-water interaction enhances wetland response

This is an example of positive feedback in the hydrologic system that would be 
difficult to model without prior knowledge of the mechanisms involved (prior 
knowledge that resulted from collection of field data).
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Ave ppt. = 440 mm
Ave ET = 810 mm

T1

P9
P8

P1

St. Denis

This is the setting under normal climatic conditions.  Based just on the balance 
between P and ET, these wetlands shouldn’t even be here.
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Winter and Rosenberry, 1998, Climatic Change

Some pretty substantial variations in 
climate occurred during the study period.  
We would not have been able to observe 
these responses without a long period of 
data collection.
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Sheet1

				PDSI		Mod. PDSI		PHDI		Z Index

		Jan-79		0.14		-0.27		-1.25		-0.42

		Feb-79		0.96		0.96		0.96		2.51

		Mar-79		1.27		1.27		1.27		1.23

		Apr-79		2.09		2.09		2.09		2.86

		May-79		2.16		2.16		2.16		0.85

		Jun-79		2.23		2.23		2.23		0.87

		Jul-79		2.56		2.56		2.56		1.68

		Aug-79		0.02		2.28		2.32		0.06

		Sep-79		-0.68		0.42		1.4		-2.04

		Oct-79		-1.06		-0.74		0.81		-1.34

		Nov-79		-1.25		-1.25		-1.25		-0.91

		Dec-79		-1.3		-1.3		-1.3		-0.55

		Jan-80		-1		-0.61		-1		0.52

		Feb-80		-0.94		-0.56		-0.94		-0.15

		Mar-80		-1.29		-1.29		-1.29		-1.33

		Apr-80		-2.55		-2.55		-2.55		-4.17

		May-80		-3.49		-3.49		-3.49		-3.61

		Jun-80		-3.07		-2.95		-3.07		0.17

		Jul-80		-3.46		-3.46		-3.46		-2.12

		Aug-80		2.02		1.38		-1.09		6.06

		Sep-80		2.29		2.29		2.29		1.45

		Oct-80		3.24		3.24		3.24		3.54

		Nov-80		2.9		2.84		2.9		0

		Dec-80		2.49		2.22		2.49		-0.35

		Jan-81		2.22		1.89		2.22		-0.02

		Feb-81		2.19		2.03		2.19		0.59

		Mar-81		1.91		1.61		1.91		-0.18

		Apr-81		1.24		0.31		1.24		-1.42

		May-81		0.65		-0.82		0.65		-1.38

		Jun-81		0.95		-0.04		0.95		1.12

		Jul-81		1.33		0.79		1.33		1.43

		Aug-81		1.19		0.62		1.19		-0.01

		Sep-81		1.87		1.87		1.87		2.42

		Oct-81		1.52		1.22		1.52		-0.48

		Nov-81		1.28		0.8		1.28		-0.25

		Dec-81		1.07		0.43		1.07		-0.23

		Jan-82		1.47		1.45		1.47		1.52

		Feb-82		1.36		1.34		1.36		0.14

		Mar-82		1.57		1.57		1.57		1.04

		Apr-82		-0.45		0.18		0.96		-1.35

		May-82		0.19		0.52		1.05		0.57

		Jun-82		0.5		1.14		1.27		0.98

		Jul-82		0.47		0.98		1.16		0.07

		Aug-82		-0.33		-0.07		0.71		-0.99

		Sep-82		-0.85		-0.85		-0.85		-1.65

		Oct-82		2.36		2.36		2.36		7.08

		Nov-82		2.4		2.4		2.4		0.86

		Dec-82		2.32		2.32		2.32		0.49

		Jan-83		2.56		2.56		2.56		1.44

		Feb-83		2.57		2.57		2.57		0.8

		Mar-83		3.54		3.54		3.54		3.7

		Apr-83		3.16		3.08		3.16		-0.04

		May-83		2.93		2.9		2.93		0.29

		Jun-83		2.95		2.95		2.95		0.97

		Jul-83		2.88		2.88		2.88		0.7

		Aug-83		2.92		2.92		2.92		1.01

		Sep-83		2.73		2.73		2.73		0.33

		Oct-83		2.45		2.4		2.45		0.02

		Nov-83		2.37		2.37		2.37		0.5

		Dec-83		2.17		2.17		2.17		0.15

		Jan-84		2.15		2.15		2.15		0.61

		Feb-84		1.85		1.66		1.85		-0.26

		Mar-84		2.08		2.08		2.08		1.28

		Apr-84		2.88		2.88		2.88		3.04

		May-84		-0.69		0.98		1.9		-2.06

		Jun-84		-0.47		1.09		1.85		0.45

		Jul-84		-1.13		-0.66		0.95		-2.12

		Aug-84		-1.87		-1.87		-1.87		-2.58

		Sep-84		-2.14		-2.14		-2.14		-1.37

		Oct-84		-0.99		0.33		-0.99		2.78

		Nov-84		-1.01		0.13		-1.01		-0.36

		Dec-84		-0.77		0.52		-0.77		0.42

		Jan-85		-0.82		0.28		-0.82		-0.39

		Feb-85		-0.99		-0.18		-0.99		-0.77

		Mar-85		-0.68		0.32		-0.68		0.63

		Apr-85		-1.45		-1.11		-1.45		-2.52

		May-85		-1.18		-0.64		-1.18		0.35

		Jun-85		-1.42		-1.23		-1.42		-1.08

		Jul-85		-2.57		-2.57		-2.57		-3.87

		Aug-85		0.92		-0.14		-1.38		2.76

		Sep-85		0.69		-0.3		-1.37		-0.4

		Oct-85		1.61		1.61		1.61		2.96

		Nov-85		2.02		2.02		2.02		1.72

		Dec-85		1.82		1.77		1.82		0.04

		Jan-86		1.53		1.26		1.53		-0.31

		Feb-86		1.43		1.17		1.43		0.16

		Mar-86		0.62		-0.6		0.62		-1.98

		Apr-86		2.34		2.34		2.34		5.35

		May-86		1.84		1.44		1.84		-0.77

		Jun-86		1.04		-0.22		1.04		-1.85

		Jul-86		2.37		2.37		2.37		4.32

		Aug-86		2.46		2.46		2.46		1

		Sep-86		3.62		3.62		3.62		4.25

		Oct-86		3.28		3.25		3.28		0.08

		Nov-86		4.18		4.18		4.18		3.72

		Dec-86		3.59		3.35		3.59		-0.47

		Jan-87		3.31		3.12		3.31		0.27

		Feb-87		3.85		3.85		3.85		2.63

		Mar-87		3.91		3.91		3.91		1.36

		Apr-87		2.49		1.24		2.49		-3.05

		May-87		2.66		1.88		2.66		1.28

		Jun-87		1.63		-0.01		1.63		-2.28

		Jul-87		3.15		3.15		3.15		5.06

		Aug-87		3.4		3.4		3.4		1.73

		Sep-87		-0.42		2.06		2.63		-1.26

		Oct-87		-0.97		0.46		1.77		-1.77

		Nov-87		-1.37		-0.77		1.09		-1.5

		Dec-87		-1.39		-1.13		0.81		-0.51

		Jan-88		-0.96		-0.52		1.02		0.88

		Feb-88		-1.22		-1.22		-1.22		-1.09

		Mar-88		-0.95		-0.59		-0.95		0.44

		Apr-88		-1.87		-1.87		-1.87		-3.06

		May-88		-2.89		-2.89		-2.89		-3.62

		Jun-88		-4.58		-4.58		-4.58		-5.97

		Jul-88		-5.97		-5.97		-5.97		-5.6

		Aug-88		-6.13		-6.13		-6.13		-2.31

		Sep-88		-6		-6		-6		-1.51

		Oct-88		-6.12		-6.12		-6.12		-2.21

		Nov-88		-5.56		-5.56		-5.56		-0.24

		Dec-88		-4.73		-4.39		-4.73		0.78

		Jan-89		-4.19		-3.73		-4.19		0.16

		Feb-89		-4.21		-4.2		-4.21		-1.36

		Mar-89		-3.92		-3.92		-3.92		-0.42

		Apr-89		-4.12		-4.12		-4.12		-1.82

		May-89		-3.88		-3.88		-3.88		-0.54

		Jun-89		-4.7		-4.7		-4.7		-3.66

		Jul-89		-5.37		-5.37		-5.37		-3.45

		Aug-89		-3.93		-2.9		-3.93		2.64

		Sep-89		-3.75		-2.93		-3.75		-0.67

		Oct-89		-4.18		-4.18		-4.18		-2.45

		Nov-89		-3.97		-3.97		-3.97		-0.66

		Dec-89		-4.11		-4.11		-4.11		-1.64

		Jan-90		-4.29		-4.29		-4.29		-1.81

		Feb-90		-4.4		-4.4		-4.4		-1.67

		Mar-90		-3.99		-3.97		-3.99		-0.11

		Apr-90		-4.2		-4.2		-4.2		-1.88

		May-90		-4.62		-4.62		-4.62		-2.57

		Jun-90		-2.53		-0.63		-2.53		4.86

		Jul-90		-2.18		-0.22		-2.18		0.28

		Aug-90		-2.42		-0.99		-2.42		-1.39

		Sep-90		-2.17		-0.77		-2.17		-0.02

		Oct-90		-2.52		-1.67		-2.52		-1.72

		Nov-90		-2.81		-2.36		-2.81		-1.64

		Dec-90		-2.66		-2.29		-2.66		-0.42

		Jan-91		-2.92		-2.92		-2.92		-1.61

		Feb-91		-2.91		-2.91		-2.91		-0.86

		Mar-91		-3.32		-3.32		-3.32		-2.13

		Apr-91		-3.29		-3.29		-3.29		-0.94

		May-91		-3.07		-3.07		-3.07		-0.36

		Jun-91		-3.08		-3.08		-3.08		-0.97

		Jul-91		-3.68		-3.68		-3.68		-2.75

		Aug-91		-4.32		-4.32		-4.32		-3.07

		Sep-91		-3.14		-2.25		-3.14		2.19

		Oct-91		-2.25		-0.67		-2.25		1.72

		Nov-91		-2.05		-0.52		-2.05		-0.09

		Dec-91		-2.04		-0.74		-2.04		-0.6

		Jan-92		-2.08		-1.04		-2.08		-0.75

		Feb-92		-2.06		-1.2		-2.06		-0.59

		Mar-92		-2.11		-1.45		-2.11		-0.79

		Apr-92		-2.54		-2.39		-2.54		-1.94

		May-92		-3.24		-3.24		-3.24		-2.89

		Jun-92		-3.73		-3.73		-3.73		-2.48

		Jul-92		-3.77		-3.77		-3.77		-1.28

		Aug-92		-3.68		-3.68		-3.68		-0.9

		Sep-92		-2.86		-2.27		-2.86		1.35

		Oct-92		-3.22		-3.22		-3.22		-1.97

		Nov-92		-2.37		-1.69		-2.37		1.54

		Dec-92		-2.17		-1.5		-2.17		-0.13

		Jan-93		-2.07		-1.49		-2.07		-0.35

		Feb-93		-2.17		-1.9		-2.17		-0.95

		Mar-93		-2.33		-2.33		-2.33		-1.15

		Apr-93		-2.49		-2.49		-2.49		-1.21

		May-93		1.05		0.24		-1.18		3.16

		Jun-93		2.6		2.6		2.6		4.96

		Jul-93		7.02		7.02		7.02		14.07

		Aug-93		7.43		7.43		7.43		3.39

		Sep-93		6.33		5.9		6.33		-1.02

		Oct-93		5.31		4.45		5.31		-1.09

		Nov-93		5.6		5.59		5.6		2.52

		Dec-93		5.77		5.77		5.77		2.25

		Jan-94		5.86		5.86		5.86		2.04

		Feb-94		5.66		5.66		5.66		1.22

		Mar-94		5.33		5.33		5.33		0.75

		Apr-94		4.97		4.97		4.97		0.56

		May-94		4.31		4.09		4.31		-0.44

		Jun-94		4.03		3.93		4.03		0.48

		Jul-94		4.69		4.69		4.69		3.23

		Aug-94		4.31		4.31		4.31		0.32

		Sep-94		5.23		5.23		5.23		4.07

		Oct-94		6.71		6.71		6.71		6.08

		Nov-94		7.08		7.08		7.08		3.16

		Dec-94		6.52		6.52		6.52		0.52

		Jan-95		6.19		6.19		6.19		1.02

		Feb-95		5.86		5.86		5.86		0.91

		Mar-95		6.28		6.28		6.28		3.07

		Apr-95		5.92		5.92		5.92		0.88

		May-95		6.36		6.36		6.36		3.16

		Jun-95		5.15		4.48		5.15		-1.68

		Jul-95		7.02		7.02		7.02		7.19

		Aug-95		6.4		6.4		6.4		0.31

		Sep-95		5.45		5.09		5.45		-0.85

		Oct-95		5.57		5.57		5.57		2.04

		Nov-95		5.28		5.28		5.28		0.83

		Dec-95		5.09		5.09		5.09		1.08

		Jan-96		5.33		5.33		5.33		2.29

		Feb-96		5.1		5.1		5.1		0.95

		Mar-96		4.99		4.99		4.99		1.24

		Apr-96		4.45		4.36		4.45		-0.09

		May-96		4.02		3.9		4.02		0.09

		Jun-96		3.41		3.01		3.41		-0.59

		Jul-96		4.22		4.22		4.22		3.49

		Aug-96		3.31		2.71		3.31		-1.42

		Sep-96		3.2		2.8		3.2		0.67

		Oct-96		2.94		2.57		2.94		0.22

		Nov-96		3.52		3.52		3.52		2.67

		Dec-96		3.73		3.73		3.73		1.69

		Jan-97		3.95		3.95		3.95		1.84

		Feb-97		3.5		3.38		3.5		-0.15

		Mar-97		3.37		3.37		3.37		0.71

		Apr-97		3.9		3.9		3.9		2.62

		May-97		-0.73		1.86		2.77		-2.19

		Jun-97		-1.29		0.18		1.84		-1.92

		Jul-97		0.76		1.59		2.41		2.27

		Aug-97		0.45		0.85		1.93		-0.69

		Sep-97		0.61		1.05		1.94		0.61

		Oct-97		0.91		1.54		2.1		1.1

		Nov-97		0.74		1.14		1.81		-0.22

		Dec-97		0.38		0.38		1.34		-0.86

		Jan-98		0.11		-0.18		0.97		-0.69

		Feb-98		1.21		1.69		1.99		3.34

		Mar-98		-0.15		1.12		1.63		-0.44

		Apr-98		-0.62		-0.15		0.97		-1.48

		May-98		-1		-1		-1		-1.32

		Jun-98		-1.18		-1.18		-1.18		-0.85

		Jul-98		-1.5		-1.5		-1.5		-1.33

		Aug-98		-0.89		-0.08		-0.89		1.38

		Sep-98		-1.64		-1.64		-1.64		-2.52

		Oct-98		1.62		1.62		1.62		4.86

		Nov-98		2.24		2.24		2.24		2.37

		Dec-98		1.93		1.75		1.93		-0.25

		Jan-99		2.34		2.34		2.34		1.83

		Feb-99		2.2		2.2		2.2		0.31

		Mar-99		1.92		1.77		1.92		-0.18

		Apr-99		2.04		2.04		2.04		0.95

		May-99		3.98		3.98		3.98		6.46

		Jun-99		3.79		3.79		3.79		0.67

		Jul-99		3.92		3.92		3.92		1.54

		Aug-99		5.8		5.8		5.8		6.87

		Sep-99		5.94		5.94		5.94		2.21

		Oct-99		5.04		4.67		5.04		-0.86

		Nov-99		3.95		2.89		3.95		-1.73

		Dec-99		3.45		2.27		3.45		-0.27

		Jan-00		3		1.69		3		-0.29

		Feb-00		3.46		2.93		3.46		2.32

		Mar-00		3.15		2.61		3.15		0.13

		Apr-00		2.9		2.39		2.9		0.23

		May-00		2.52		1.89		2.52		-0.24

		Jun-00		3.03		3.03		3.03		2.3

		Jul-00		3.87		3.87		3.87		3.46

		Aug-00		5.12		5.12		5.12		4.94

		Sep-00		4.93		4.93		4.93		1

		Oct-00		5.53		5.53		5.53		3.34

		Nov-00		6.2		6.2		6.2		3.71

		Dec-00		5.97		5.97		5.97		1.23

		Jan-01		5.43		5.43		5.43		0.21

		Feb-01		5.17		5.17		5.17		0.9

		Mar-01		4.68		4.68		4.68		0.14

		Apr-01		4.24		4.22		4.24		0.11

		May-01		3.92		3.92		3.92		0.35

		Jun-01		4.42		4.42		4.42		2.71

		Jul-01		6.42		6.42		6.42		7.36

		Aug-01		6.03		6.03		6.03		0.83

		Sep-01		5.02		4.54		5.02		-1.17

		Oct-01		4.73		4.43		4.73		0.66

		Nov-01		3.71		2.79		3.71		-1.59

		Dec-01		3.09		1.88		3.09		-0.71
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87 ha

The site went from looking like this . . .
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87 ha

Every one of these wetlands dried up during the drought

To this (5-year drought) . . .
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To this (extreme wet period that has 
continues to the present (with a few 
short exceptions).

50McKenna et al., 2017, “Evidence of state 
shift” Climatic Change



1988, 1989, 1990, 1991, 1992

T1

The wetland bed is completely dry.  The 
platform in the center is where data are 
collected for quantifying 
evapotranspiration.
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1997
2.7 m stage rise
(0.3 m higher yet in 1998)

T1

The ET platform was destroyed by 
moving ice in the spring.  Sensors were 
subsequently deployed from a pipe that 
was removed during ice  cover.
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Ground-water trough surrounds wetland P1
• Need to pay attention to near-shore processes
• GW trough enhances wetland stage decline 

during drought

Winter and Rosenberry, 1995, Wetlands
Rosenberry and Winter, 1997, J. Hydrology
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?
GW provides a positive feedback to wetland response to 
climate change

During the drought, ET from plants surrounding the 
wetland pulled the water table down to levels lower than 
wetland stage (stage also was declining due to direct 
evaporation).  This reversal in gradient at the wetland 
shoreline caused wetland water to flow toward the water-
table troughs, which accelerated the decrease in wetland 
stage.  This process also occurred during wet periods, but 
gradients were much smaller as was flow from the wetland 
to groundwater.

54

Could this be why the 
Jesechko et al., 2021, 
Nature paper founds so 
much GW recharge?



Ground-water mounds surrounds wetland 
P1 during deluge

• Need to pay attention to near-shore processes
• Water table rose to or near land surface during 

wet period.  No storage left.  Virtually all precip. 
Falling on the basin ended up in the wetland.

During wet periods, the water table rose to land surface 
almost everywhere except beneath the highest hills.  Since 
there was no remaining storage in the system, there was no 
place for additional rainfall to go and so runoff was greatly 
increased, accelerating wetland stage rise.
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Desiccation cracks

Root channels

Worm tubes

Gopher holes

Hydraulic conductivity gets really 
large right at the surface

56

Remember 
what Masaki 
said about K
being largest 
near land 
surface?



The wetter the period, the greater the 
enhancement of overland flow

In these prairie-wetland settings, K
increases close to land surface.  Therefore, 
even if we don’t have the water table at 
land surface, and even if we don’t have 
overland flow everywhere, we can still have 
greater flow to the wetland through the 
shallowest (uppermost) portion of the 
groundwater flow system.
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There can be many preferential flowpaths
generated by pocket gophers.  
Depressions within an alfalfa field had the 
most gopher burrows with an average of 9 
burrow mounds per m2.  However, soil 
infiltrability was somewhat complex and not 
as sensitive to gopher burrowing as one 
might expect.  This is because “pocket 
gophers are known to plug up to 50 cm 
lengths of tunnel to avoid undesirable 
conditions.”  It appears that gophers can 
both increase and decrease soil infiltration.

58
Zaitlin et al., 2007, Appl. Soil Ecol.



Long Lake, near Kalamazoo, MI

While North Dakota and Minnesota were wet, Michigan was dry –
the public took notice

This is the last example.  Phew!
An example of how 
modeling first could have 
saved a lot of money
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60

Long Lake during normal conditions



61

Long Lake after several dry years



Long Lake, MI shoreline retreat

Anchored 
raft

Dock

When you have to walk ½ km 
past the end of your dock to get 
to the lake something has to be 
done!
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A very pro-active lake 
association took matters into 
their own hands and installed a 
lake-augmentation well.
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Seepage meters
Instrumented
wells

9500 lpm
(2500 gpm)

Pumped over 7500 
m3/d (2500 gpm) into 
the lake for months
•Lake stage did not rise

•Why?

But USGS was called in when 
the lake stage didn’t rise like it 
should have.  We saw GW flow 
TO the lake almost everywhere, 
except for one area. . .
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Rosenberry, Luukkonen, unpublished data

Area of rapid 
downward 
seepage

Pumping well

Didn’t account for return flow

A groundwater flow model might 
have helped a lot in the location 
and construction of the well.
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• Do modeling and field work 
iteratively

• Field work can consume you
• You’ll never really figure it 

out (geologic complexity)
• Expect the unexpected
• Geology rules (and is almost 

always more complex than you thought)
• Bring in young scientists 

with new ideas
• Work with other disciplines,

even (gasp!)
Geochemists!

Lessons learned
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Wetland dry

And think long-term
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If our study ended in 1992 we 
would have thought that 
wetlands were in great trouble 
and that maximum depths 
during wet times were on the 
order of 1 m.



1990

Winter and Rosenberry, 1998 Climatic Change
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Winter and Rosenberry, 1998 Climatic Change
McKenna et al., 2017 Climatic Change
Mushet et al., 2018, Wetlands
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1997

These high stages have persisted to 
the present.  This has been 
sufficiently long that a couple of 
papers have since been published 
that discuss a “state shift,” essentially 
a change to a wetter climate.

After nearly 30 years of 
high stages, has there been a
“state shift” to a wetter
climate?



“You have to study a 
place for a while before 

you begin to ask the 
right questions.”
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